向量丛是一个几何构造,对于拓扑空间(或流形,或代数簇)的每一点用互相兼容的方式附上一个向量空间,所用这些向量空间"粘起来"就构成了一个新的拓扑空间(或流形,或代数簇)。一个典型的例子是流形的切丛:对流形的每一点附上流形在该点的切空间。或者考虑一个平面上的光滑曲线,然后在曲线的每一点附上和曲线垂直的直线;这就是曲线的"法丛"。向量丛是纤维丛的一种。